
Chapter 12
Markov Decision Processes

12.1. (a) g1 = (800,275,300,250)T

(b)

vα (a) = max{800+0.95(0.1,0.3,0.6,0)




8651.88
8199.73
8233.37
8402.65


 ;

600+0.95(0.6,0.3,0.1,0)




8651.88
8199.73
8233.37
8402.65


}

= max{8651.88,8650.66}= 8651.88

vα (b) = max{275+0.95(0,0.2,0.5,0.3)




8651.88
8199.73
8233.37
8402.65


 ;

75+0.95(0.75,0.1,0.1,0.05)




8651.88
8199.73
8233.37
8402.65


}

= max{8138.56,8199.73}= 8199.73
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vα (c) = max{300+0.95(0,0.1,0.2,0.7)




8651.88
8199.73
8233.37
8402.65


 ;

100+0.95(0.8,0.2,0,0)




8651.88
8199.73
8233.37
8402.65


}

= max{8231.08,8233.37}= 8233.37

vα (d) = max{250+0.95(0.8,0.1,0,0.1)




8651.88
8199.73
8233.37
8402.65


 ;

150+0.95(0.9,0.1,0,0)




8651.88
8199.73
8233.37
8402.65


}

= max{8402.65,8326.33}= 8402.65

Since, for eachi ∈ E, the maximum of the two values yields the given vector
vα , it is optimum.

(c) Using the value iteration algorithm, the optimal value function is
v0 = (0,0,0,0)
v1 = (800,275,300,250)

...
v30 = (1676.76,1170.67,1222.76,1366.59)

(d) α = 1.0/1.12
a0 = (1,1,1,1) =⇒ v = (4092,3581,3672,3835)
a1 = (1,2,1,1) =⇒ v = (4170,3707,3742,3908)
a2 = (1,2,1,1); thereforea2 is optimal.

(e) minua +ub +uc +ud
subject to:

ua ≥ 800+0.089ua +0.268ub +0.535uc

ua ≥ 600+0.535ua +0.268ub +0.089uc

ub ≥ 275 +0.178ub +0.446uc +0.268ud

ub ≥ 75 +0.669ua +0.089ub +0.089uc +0.044ud

uc ≥ 300 +0.089ub +0.178uc +0.625ud

uc ≥ 100+0.714ua +0.178ub

ud ≥ 250+0.714ua +0.089ub +0.089ud

ud ≥ 150+0.803ua +0.089ub
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12.3. (a) Let the action spaceA = {1,2,3}where each denotes to vote the Labor
Party, Worker’s Choice Party and the independent candidates, respectively. The
optimal policy isa = (1,2,3) with

P =




0.75 0.2 0.05
0.2 0.6 0.2
0.05 0.4 0.55




f = (3.2,2.3,1.5) (in millions)
(b) The optimal policy isa = (2,1,1)with the value functionvα = (36.8,35.46,33.71)
(in trillions), and

P =




0.8 0.15 0.05
0.3 0.5 0.2
0.1 0.3 0.6




f = (4,3.5,2.5) (in trillions)
(c) The optimal policy isa = (2,1,3)with the value functionvα = (15.57,16.57,17.56)
(in thousands), and

P =




0.8 0.15 0.05
0.3 0.5 0.2
0.05 0.4 0.55




f = (1.33,1.75,2.2) (in thousands)

12.5. State spaceE with j states, Markov matrixP and profit functionf . Expanding
the state spaceE with a new state∆ which has a profit of zero, the Markov decision
process can be formulated as:
State spaceE ′ = {i | i ∈ E or ∆} where∆ stands for the absorbing state of stopping.
Action spaceA = {1,2}where 1 denotes the action of continuing and 2 denotes the
action of stopping.
The profit vectors aref1 = (0, · · · ,0) andf2 = ( f (1), f (2), · · · , f ( j), 0)
We will construct the new transition matrices the same way as we did in Example
3.4.

P1 =
[

P 0
0 1

]
, P2 =

[
0 1
0 1

]

where0 and1 are matrices or vectors of the proper dimenstion as the context re-
quires.The linear programming formulation is (from Algorithm 3.11):

min∑i∈E u(i)
subject to:
u(i) ≥ f1(i)+α ∑ j∈E P1(i, j)u( j) for eachi ∈ E
u(i) ≥ f (i)+α ∑ j∈E P2(i, j)u( j) for eachi ∈ E.
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Based on the facts thatf (∆) = 0 and∆ is an absorbing state, it follows thatu(∆) = 0
and the previous definitions ofP1 and P2, the above formulation reduces to the
formulation given in Algorithm 3.18.

12.7. (a) The state space isE = {0,1,2,3,4,5} for the inventory at the end of
Friday and the action space for the order up-to quantity isA = {0,1,2,3,4,5}.
According to each order up-to quantity, the expected profit function is the ex-
pected sales revenue minus costs. The corresponding Markov transition matri-
ces for each order upto quantity can be obtained in a similar manner as in Ch. 2,
Exercise 2.7. For example, whenk = 3 the transition matrix is:

P3 =




0.58 0.22 0.15 0.05 0 0
0.58 0.22 0.15 0.05 0 0
0.58 0.22 0.15 0.05 0 0
0.58 0.22 0.15 0.05 0 0
0.36 0.22 0.22 0.15 0.05 0
0.18 0.18 0.22 0.22 0.15 0.05




andf3 = (120.5,620.5,1120.5,1720.5,2008.5,2152.5).

(b)

Friday’s inventory Oder up-to quan.
0 5
1 5
2 5
3 5
4 4
5 5

(c)

Friday’s inventory Order up-to quan.
0 5
1 5
2 5
3 3
4 4
5 5

(d) Note that the negative initial inventory denotes the number of items on back-
order.
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Friday’s inventory Order up-to quan.
-5 3
-4 3
-3 3
-2 3
-1 3
0 0
1 1
2 2
3 3
4 4
5 5

(e) The answers for part (b) and part (c) are the same as following under the
average cost criterion:

Friday’s inventory Order up-to quan.
0 5
1 5
2 5
3 5
4 4
5 5

The answer for part (d) changes to:

Friday’s inventory Order up-to quan.
-5 5
-4 5
-3 5
-2 5
-1 5
0 5
1 1
2 2
3 3
4 4
5 5

12.9. (a) 0.069+0.931p.
(b) 0.931(1− p).
(c) If In+1 = 0, thenZn+1 = (0.02+0.98p)/(0.069+0.931p); if In+1 = 1, then
Zn+1 = 0;

(d) For p = 0, there is only one possible decision, which yields

v(0) = 500+0.9× (0.069v( 0.02
0.069)+0.931v(0) )
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and forp > 0, we have

v(p) = max{ −475+0.9× ( (0.069+0.931p)v( 0.02+0.98p
0.069+0.931p )+0.931(1− p)v(0) ) ;

−2975+0.9× (0.069v( 0.02
0.069)+0.931v(0) )}

(e) Notice that the possible values ofp are discrete being contained within the
following set (depending ap∗): {0.0,0.290,0.897,0.994, · · ·}. Thus, one way
to solve the problem is to first letp∗ be a number between 0.0 and 0.290 which
will yield the following equations:

v(0) = 500+0.062v(0.290)+0.838v(0)
v(0.290) = −2975+0.062v(0.290)+0.838v(0)

which yieldsv(0) = 2842. Next ifp∗ is a number between 0.290 and 0.897 the
system of equations becomes:

v(0) = 500+0.062v(0.290)+0.838v(0)
v(0.290) = −475+0.305v(0.897)+0.595v(0)
v(0.897) = −2975+0.062v(0.290)+0.838v(0)

which yieldsv(0) = 3810. Next ifp∗ is a number between 0.897 and 0.994 the
system of equations becomes:

v(0) = 500+0.062v(0.290)+0.838v(0)
v(0.290) = −475+0.305v(0.897)+0.595v(0)
v(0.897) = −475+0.814v(0.994)+0.086v(0)
v(0.994) = −2975+0.062v(0.290)+0.838v(0)

which yieldsv(0) = 3774. Thus, we would assert thatp∗ should be any value
between 0.290 and 0.897. (In other words, replace whenever two bad products
are produced in sequence.)


