Chapter 12 Markov Decision Processes

12.1. (a) $\mathbf{g_1} = (800, 275, 300, 250)^T$ (b)

$$v^{\alpha}(a) = \max\left\{800 + 0.95(0.1, 0.3, 0.6, 0) \begin{pmatrix} 8651.88\\ 8199.73\\ 8233.37\\ 8402.65 \end{pmatrix}\right\};$$

$$600 + 0.95(0.6, 0.3, 0.1, 0) \begin{pmatrix} 8651.88\\ 8199.73\\ 8233.37\\ 8402.65 \end{pmatrix}\}$$

$$= \max\left\{8651.88, 8650.66\right\} = 8651.88$$

$$v^{\alpha}(b) = \max\left\{275 + 0.95(0, 0.2, 0.5, 0.3) \begin{pmatrix} 8651.88\\ 8199.73\\ 8233.37\\ 8402.65 \end{pmatrix}\right;$$

$$75 + 0.95(0.75, 0.1, 0.1, 0.05) \begin{pmatrix} 8651.88\\ 8199.73\\ 8233.37\\ 8402.65 \end{pmatrix}$$

$$= \max\left\{8138.56, 8199.73\right\} = 8199.73$$

$$\begin{split} \nu^{\alpha}(c) &= \max\left\{300 + 0.95(0, 0.1, 0.2, 0.7) \begin{pmatrix} 8651.88\\ 8199.73\\ 8233.37\\ 8402.65 \end{pmatrix}\right\};\\ &100 + 0.95(0.8, 0.2, 0, 0) \begin{pmatrix} 8651.88\\ 8199.73\\ 8233.37\\ 8402.65 \end{pmatrix}\}\\ &= \max\left\{8231.08, 8233.37\right\} = 8233.37\\ \nu^{\alpha}(d) &= \max\left\{250 + 0.95(0.8, 0.1, 0, 0.1) \begin{pmatrix} 8651.88\\ 8199.73\\ 8233.37\\ 8402.65 \end{pmatrix}\right\};\\ &150 + 0.95(0.9, 0.1, 0, 0) \begin{pmatrix} 8651.88\\ 8199.73\\ 8233.37\\ 8402.65 \end{pmatrix}\};\\ &= \max\left\{8402.65, 8326.33\right\} = 8402.65 \end{split}$$

Since, for each $i \in E$, the maximum of the two values yields the given vector v^{α} , it is optimum.

(c) Using the value iteration algorithm, the optimal value function is $\mathbf{v}_0 = (0, 0, 0, 0)$ $\mathbf{v}_1 = (800, 275, 300, 250)$ \vdots $\mathbf{v}_{30} = (1676.76, 1170.67, 1222.76, 1366.59)$ (d) $\alpha = 1.0/1.12$ $\mathbf{a}_0 = (1, 1, 1, 1) \implies \mathbf{v} = (4092, 3581, 3672, 3835)$ $\mathbf{a}_1 = (1, 2, 1, 1) \implies \mathbf{v} = (4170, 3707, 3742, 3908)$ $\mathbf{a}_2 = (1, 2, 1, 1)$; therefore \mathbf{a}_2 is optimal. (e) min $u_a + u_b + u_c + u_d$ subject to: $u_a \ge 800 + 0.089u_a + 0.268u_b + 0.535u_c$ $u_a \ge 600 + 0.535u_a + 0.268u_b + 0.089u_c$ $u_a \ge 275 = -40, 178u_b + 0.446u_b + 0.268u_b$

```
\begin{array}{l} u_{a} \geq 000 + 0.055 u_{a}^{2} + 0.200 u_{b}^{2} + 0.009 u_{c}^{2} \\ u_{b} \geq 275 & +0.178 u_{b} + 0.446 u_{c} + 0.268 u_{d} \\ u_{b} \geq 75 & +0.669 u_{a} + 0.089 u_{b} + 0.089 u_{c} + 0.044 u_{d} \\ u_{c} \geq 300 & +0.089 u_{b} + 0.178 u_{c} + 0.625 u_{d} \\ u_{c} \geq 100 + 0.714 u_{a} + 0.178 u_{b} \\ u_{d} \geq 250 + 0.714 u_{a} + 0.089 u_{b} & +0.089 u_{d} \\ u_{d} \geq 150 + 0.803 u_{a} + 0.089 u_{b} \end{array}
```

- 12 Markov Decision Processes
- **12.3.** (a) Let the action space $A = \{1, 2, 3\}$ where each denotes to vote the Labor Party, Worker's Choice Party and the independent candidates, respectively. The optimal policy is $\mathbf{a} = (1, 2, 3)$ with

$$\mathbf{P} = \begin{bmatrix} 0.75 & 0.2 & 0.05 \\ 0.2 & 0.6 & 0.2 \\ 0.05 & 0.4 & 0.55 \end{bmatrix}$$

 $\mathbf{f} = (3.2, 2.3, 1.5)$ (in millions)

(b) The optimal policy is $\mathbf{a} = (2, 1, 1)$ with the value function $\mathbf{v}^{\alpha} = (36.8, 35.46, 33.71)$ (in trillions), and

$$\mathbf{P} = \begin{bmatrix} 0.8 & 0.15 & 0.05 \\ 0.3 & 0.5 & 0.2 \\ 0.1 & 0.3 & 0.6 \end{bmatrix}$$

f = (4, 3.5, 2.5) (in trillions)

(c) The optimal policy is $\mathbf{a} = (2, 1, 3)$ with the value function $\mathbf{v}^{\alpha} = (15.57, 16.57, 17.56)$ (in thousands), and

$$\mathbf{P} = \begin{bmatrix} 0.8 & 0.15 & 0.05 \\ 0.3 & 0.5 & 0.2 \\ 0.05 & 0.4 & 0.55 \end{bmatrix}$$

 $\mathbf{f} = (1.33, 1.75, 2.2)$ (in thousands)

12.5. State space *E* with *j* states, Markov matrix **P** and profit function *f*. Expanding the state space *E* with a new state Δ which has a profit of zero, the Markov decision process can be formulated as:

State space $E' = \{i \mid i \in E \text{ or } \Delta\}$ where Δ stands for the absorbing state of stopping. Action space $A = \{1, 2\}$ where 1 denotes the action of continuing and 2 denotes the action of stopping.

The profit vectors are $\mathbf{f}_1 = (0, \dots, 0)$ and $\mathbf{f}_2 = (f(1), f(2), \dots, f(j), 0)$

We will construct the new transition matrices the same way as we did in Example 3.4.

 $\mathbf{P}_1 = \left[\begin{array}{cc} \mathbf{P} & \mathbf{0} \\ \mathbf{0} & 1 \end{array} \right], \quad \mathbf{P}_2 = \left[\begin{array}{cc} \mathbf{0} & \mathbf{1} \\ \mathbf{0} & 1 \end{array} \right]$

where 0 and 1 are matrices or vectors of the proper dimension as the context requires. The linear programming formulation is (from Algorithm 3.11):

$$\begin{split} \min & \sum_{i \in E} u(i) \\ \text{subject to:} \\ & u(i) \geq f_1(i) + \alpha \sum_{j \in E} P_1(i, j) u(j) \quad \text{for each } i \in E \\ & u(i) \geq f(i) + \alpha \sum_{j \in E} P_2(i, j) u(j) \quad \text{for each } i \in E. \end{split}$$

Based on the facts that $f(\Delta) = 0$ and Δ is an absorbing state, it follows that $u(\Delta) = 0$ and the previous definitions of \mathbf{P}_1 and \mathbf{P}_2 , the above formulation reduces to the formulation given in Algorithm 3.18.

12.7. (a) The state space is $E = \{0, 1, 2, 3, 4, 5\}$ for the inventory at the end of Friday and the action space for the order up-to quantity is $A = \{0, 1, 2, 3, 4, 5\}$. According to each order up-to quantity, the expected profit function is the expected sales revenue minus costs. The corresponding Markov transition matrices for each order up oquantity can be obtained in a similar manner as in Ch. 2, Exercise 2.7. For example, when k = 3 the transition matrix is:

	0.58	0.22	0.15	0.05	0	0]
	0.58	0.22	0.15	0.05	0	0
ъ	0.58	0.22	0.15	0.05	0	0
$\mathbf{r}_3 =$	0.58	0.22	0.15	0.05	0	0
	0.36	0.22	0.22	0.15	0.05	0
	0.18	0.18	0.22	0.22	0.15	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0.05 \end{bmatrix}$

and $\mathbf{f}_3 = (120.5, 620.5, 1120.5, 1720.5, 2008.5, 2152.5)$.

	Friday's inventory	Oder up-to quan.
	0	5
	1	5
(b)	2	5
	3	5
	4	4
	5	5
	Friday's inventory	Order up-to quan.
-	Friday's inventory 0	Order up-to quan. 5
	Friday's inventory 0 1	
(c)	Friday's inventory 0 1 2	5
(c)	0 1	5 5
(c)	0 1 2	5 5 5
(c)	0 1 2 3	5 5 5 3

(d) Note that the negative initial inventory denotes the number of items on backorder. 12 Markov Decision Processes

Order up-to quan.	
3	
3	
3	
3	
3	
0	
1	
2	
3	
4	
5	

(e) The answers for part (b) and part (c) are the same as following under the average cost criterion:

Friday's inventory	Order up-to quan.
0	5
1	5
2	5
3	5
4	4
5	5
	5

The answer for part (d) changes to:

Friday's inventory	Order up-to quan.
-5	5
-4	5
-3	5
-2	5
-1	5
0	5
1	1
2	2
3	3
4	4
5	5

12.9. (a) 0.069 + 0.931p.

(b) 0.931(1-p).

(c) If $I_{n+1} = 0$, then $Z_{n+1} = (0.02 + 0.98p)/(0.069 + 0.931p)$; if $I_{n+1} = 1$, then $Z_{n+1} = 0$;

(d) For p = 0, there is only one possible decision, which yields

$$v(0) = 500 + 0.9 \times \left(0.069 v\left(\frac{0.02}{0.069}\right) + 0.931 v(0)\right)$$

12 Markov Decision Processes

and for p > 0, we have

$$v(p) = \max\{-475 + 0.9 \times ((0.069 + 0.931p)v(\frac{0.02 + 0.98p}{0.069 + 0.931p}) + 0.931(1 - p)v(0)); -2975 + 0.9 \times (0.069v(\frac{0.02}{0.069}) + 0.931v(0))\}$$

(e) Notice that the possible values of p are discrete being contained within the following set (depending a p^*): {0.0, 0.290, 0.897, 0.994, ...}. Thus, one way to solve the problem is to first let p^* be a number between 0.0 and 0.290 which will yield the following equations:

$$v(0) = 500 + 0.062v(0.290) + 0.838v(0)$$

$$v(0.290) = -2975 + 0.062v(0.290) + 0.838v(0)$$

which yields v(0) = 2842. Next if p^* is a number between 0.290 and 0.897 the system of equations becomes:

$$v(0) = 500 + 0.062v(0.290) + 0.838v(0)$$

$$v(0.290) = -475 + 0.305v(0.897) + 0.595v(0)$$

$$v(0.897) = -2975 + 0.062v(0.290) + 0.838v(0)$$

which yields v(0) = 3810. Next if p^* is a number between 0.897 and 0.994 the system of equations becomes:

$$v(0) = 500 + 0.062v(0.290) + 0.838v(0)$$

$$v(0.290) = -475 + 0.305v(0.897) + 0.595v(0)$$

$$v(0.897) = -475 + 0.814v(0.994) + 0.086v(0)$$

$$v(0.994) = -2975 + 0.062v(0.290) + 0.838v(0)$$

which yields v(0) = 3774. Thus, we would assert that p^* should be any value between 0.290 and 0.897. (In other words, replace whenever two bad products are produced in sequence.)