Chapter 12
 Markov Decision Processes

12.1. (a) $\mathbf{g}_{\mathbf{1}}=(800,275,300,250)^{T}$
(b)

$$
\begin{aligned}
& v^{\alpha}(a)= \max \left\{800+0.95(0.1,0.3,0.6,0)\left(\begin{array}{l}
8651.88 \\
8199.73 \\
8233.37 \\
8402.65
\end{array}\right)\right. \\
&\left.600+0.95(0.6,0.3,0.1,0)\left(\begin{array}{l}
8651.88 \\
8199.73 \\
8233.37 \\
8402.65
\end{array}\right)\right\} \\
&= \max \{8651.88,8650.66\}=8651.88
\end{aligned}
$$

$$
\begin{aligned}
v^{\alpha}(b)= & \max \left\{275+0.95(0,0.2,0.5,0.3)\left(\begin{array}{l}
8651.88 \\
8199.73 \\
8233.37 \\
8402.65
\end{array}\right)\right. \\
& \left.75+0.95(0.75,0.1,0.1,0.05)\left(\begin{array}{l}
8651.88 \\
8199.73 \\
8233.37 \\
8402.65
\end{array}\right)\right\} \\
= & \max \{8138.56,8199.73\}=8199.73
\end{aligned}
$$

$$
\begin{aligned}
& v^{\alpha}(c)= \max \left\{300+0.95(0,0.1,0.2,0.7)\left(\begin{array}{l}
8651.88 \\
8199.73 \\
8233.37 \\
8402.65
\end{array}\right) ;\right. \\
&\left.100+0.95(0.8,0.2,0,0)\left(\begin{array}{l}
8651.88 \\
8199.73 \\
8233.37 \\
8402.65
\end{array}\right)\right\} \\
&= \max \{8231.08,8233.37\}=8233.37 \\
& v^{\alpha}(d)=\max \left\{250+0.95(0.8,0.1,0,0.1)\left(\begin{array}{l}
8651.88 \\
8199.73 \\
8233.37 \\
8402.65
\end{array}\right) ;\right. \\
&\left.150+0.95(0.9,0.1,0,0)\left(\begin{array}{l}
8651.88 \\
8199.73 \\
8233.37 \\
8402.65
\end{array}\right)\right\} \\
&= \max \{8402.65,8326.33\}=8402.65
\end{aligned}
$$

Since, for each $i \in E$, the maximum of the two values yields the given vector v^{α}, it is optimum.
(c) Using the value iteration algorithm, the optimal value function is
$\mathbf{v}_{0}=(0,0,0,0)$
$\mathbf{v}_{1}=(800,275,300,250)$
$\mathbf{v}_{30}=(1676.76,1170.67,1222.76,1366.59)$
(d) $\alpha=1.0 / 1.12$
$\mathbf{a}_{0}=(1,1,1,1) \Longrightarrow \mathbf{v}=(4092,3581,3672,3835)$
$\mathbf{a}_{1}=(1,2,1,1) \Longrightarrow \mathbf{v}=(4170,3707,3742,3908)$
$\mathbf{a}_{2}=(1,2,1,1)$; therefore \mathbf{a}_{2} is optimal.
(e) $\min u_{a}+u_{b}+u_{c}+u_{d}$
subject to:

$$
\begin{aligned}
& u_{a} \geq 800+0.089 u_{a}+0.268 u_{b}+0.535 u_{c} \\
& u_{a} \geq 600+0.535 u_{a}+0.268 u_{b}+0.089 u_{c} \\
& u_{b} \geq 275 \quad+0.178 u_{b}+0.446 u_{c}+0.268 u_{d} \\
& u_{b} \geq 75+0.669 u_{a}+0.089 u_{b}+0.089 u_{c}+0.044 u_{d} \\
& u_{c} \geq 300 \quad+0.089 u_{b}+0.178 u_{c}+0.625 u_{d} \\
& u_{c} \geq 100+0.714 u_{a}+0.178 u_{b} \\
& u_{d} \geq 250+0.714 u_{a}+0.089 u_{b} \\
& u_{d} \geq 150+0.803 u_{a}+0.089 u_{b}
\end{aligned}
$$

12.3. (a) Let the action space $A=\{1,2,3\}$ where each denotes to vote the Labor Party, Worker's Choice Party and the independent candidates, respectively. The optimal policy is $\mathbf{a}=(1,2,3)$ with
$\mathbf{P}=\left[\begin{array}{lll}0.75 & 0.2 & 0.05 \\ 0.2 & 0.6 & 0.2 \\ 0.05 & 0.4 & 0.55\end{array}\right]$
$\mathbf{f}=(3.2,2.3,1.5)$ (in millions)
(b) The optimal policy is $\mathbf{a}=(2,1,1)$ with the value function $\mathbf{v}^{\alpha}=(36.8,35.46,33.71)$ (in trillions), and

$$
\mathbf{P}=\left[\begin{array}{lll}
0.8 & 0.15 & 0.05 \\
0.3 & 0.5 & 0.2 \\
0.1 & 0.3 & 0.6
\end{array}\right]
$$

$\mathbf{f}=(4,3.5,2.5)$ (in trillions)
(c) The optimal policy is $\mathbf{a}=(2,1,3)$ with the value function $\mathbf{v}^{\alpha}=(15.57,16.57,17.56)$ (in thousands), and

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{lll}
0.8 & 0.15 & 0.05 \\
0.3 & 0.5 & 0.2 \\
0.05 & 0.4 & 0.55
\end{array}\right] \\
& \mathbf{f}=(1.33,1.75,2.2) \text { (in thousands) }
\end{aligned}
$$

12.5. State space E with j states, Markov matrix \mathbf{P} and profit function f. Expanding the state space E with a new state Δ which has a profit of zero, the Markov decision process can be formulated as:
State space $E^{\prime}=\{i \mid i \in E$ or $\Delta\}$ where Δ stands for the absorbing state of stopping. Action space $A=\{1,2\}$ where 1 denotes the action of continuing and 2 denotes the action of stopping.
The profit vectors are $\mathbf{f}_{1}=(0, \cdots, 0)$ and $\mathbf{f}_{2}=(f(1), f(2), \cdots, f(j), 0)$
We will construct the new transition matrices the same way as we did in Example 3.4.

$$
\mathbf{P}_{1}=\left[\begin{array}{ll}
\mathbf{P} & \mathbf{0} \\
\mathbf{0} & 1
\end{array}\right], \quad \mathbf{P}_{2}=\left[\begin{array}{ll}
\mathbf{0} & \mathbf{1} \\
\mathbf{0} & 1
\end{array}\right]
$$

where $\mathbf{0}$ and $\mathbf{1}$ are matrices or vectors of the proper dimenstion as the context requires. The linear programming formulation is (from Algorithm 3.11):

```
\(\min \sum_{i \in E} u(i)\)
subject to:
\(u(i) \geq f_{1}(i)+\alpha \sum_{j \in E} P_{1}(i, j) u(j)\) for each \(i \in E\)
\(u(i) \geq f(i)+\alpha \sum_{j \in E} P_{2}(i, j) u(j) \quad\) for each \(i \in E\).
```

Based on the facts that $f(\Delta)=0$ and Δ is an absorbing state, it follows that $u(\Delta)=0$ and the previous definitions of \mathbf{P}_{1} and \mathbf{P}_{2}, the above formulation reduces to the formulation given in Algorithm 3.18.
12.7. (a) The state space is $E=\{0,1,2,3,4,5\}$ for the inventory at the end of Friday and the action space for the order up-to quantity is $A=\{0,1,2,3,4,5\}$. According to each order up-to quantity, the expected profit function is the expected sales revenue minus costs. The corresponding Markov transition matrices for each order upto quantity can be obtained in a similar manner as in Ch .2 , Exercise 2.7. For example, when $k=3$ the transition matrix is:

$$
\mathbf{P}_{3}=\left[\begin{array}{llllll}
0.58 & 0.22 & 0.15 & 0.05 & 0 & 0 \\
0.58 & 0.22 & 0.15 & 0.05 & 0 & 0 \\
0.58 & 0.22 & 0.15 & 0.05 & 0 & 0 \\
0.58 & 0.22 & 0.15 & 0.05 & 0 & 0 \\
0.36 & 0.22 & 0.22 & 0.15 & 0.05 & 0 \\
0.18 & 0.18 & 0.22 & 0.22 & 0.15 & 0.05
\end{array}\right]
$$

and $\mathbf{f}_{3}=(120.5,620.5,1120.5,1720.5,2008.5,2152.5)$.

Friday's inventory	Oder up-to quan.
0	5
1	5
2	5
3	5
4	4
5	5

	Friday's inventory	Order up-to quan.
	0	5
(c)	1	5
	2	5
	3	3
	4	5

(d) Note that the negative initial inventory denotes the number of items on backorder.

12 Markov Decision Processes

Friday's inventory	Order up-to quan.
-5	3
-4	3
-3	3
-2	3
-1	3
0	0
1	1
2	2
3	3
4	4
5	5

(e) The answers for part (b) and part (c) are the same as following under the average cost criterion:

Friday's inventory	Order up-to quan.
0	5
1	5
2	5
3	5
4	4
5	5

The answer for part (d) changes to:

Friday's inventory	Order up-to quan.
-5	5
-4	5
-3	5
-2	5
-1	5
0	5
1	1
2	2
3	3
4	4
5	5

12.9. (a) $0.069+0.931 p$.
(b) $0.931(1-p)$.
(c) If $I_{n+1}=0$, then $Z_{n+1}=(0.02+0.98 p) /(0.069+0.931 p)$; if $I_{n+1}=1$, then $Z_{n+1}=0$;
(d) For $p=0$, there is only one possible decision, which yields

$$
v(0)=500+0.9 \times\left(0.069 v\left(\frac{0.02}{0.069}\right)+0.931 v(0)\right)
$$

and for $p>0$, we have

$$
\begin{aligned}
v(p)=\max \{ & -475+0.9 \times\left((0.069+0.931 p) v\left(\frac{0.02+0.98 p}{0.069+0.931 p}\right)+0.931(1-p) v(0)\right) ; \\
& \left.-2975+0.9 \times\left(0.069 v\left(\frac{0.02}{0.069}\right)+0.931 v(0)\right)\right\}
\end{aligned}
$$

(e) Notice that the possible values of p are discrete being contained within the following set (depending a p^{*}): $\{0.0,0.290,0.897,0.994, \cdots\}$. Thus, one way to solve the problem is to first let p^{*} be a number between 0.0 and 0.290 which will yield the following equations:

$$
\begin{aligned}
v(0) & =500+0.062 v(0.290)+0.838 v(0) \\
v(0.290) & =-2975+0.062 v(0.290)+0.838 v(0)
\end{aligned}
$$

which yields $v(0)=2842$. Next if p^{*} is a number between 0.290 and 0.897 the system of equations becomes:

$$
\begin{aligned}
v(0) & =500+0.062 v(0.290)+0.838 v(0) \\
v(0.290) & =-475+0.305 v(0.897)+0.595 v(0) \\
v(0.897) & =-2975+0.062 v(0.290)+0.838 v(0)
\end{aligned}
$$

which yields $v(0)=3810$. Next if p^{*} is a number between 0.897 and 0.994 the system of equations becomes:

$$
\begin{aligned}
v(0) & =500+0.062 v(0.290)+0.838 v(0) \\
v(0.290) & =-475+0.305 v(0.897)+0.595 v(0) \\
v(0.897) & =-475+0.814 v(0.994)+0.086 v(0) \\
v(0.994) & =-2975+0.062 v(0.290)+0.838 v(0)
\end{aligned}
$$

which yields $v(0)=3774$. Thus, we would assert that p^{*} should be any value between 0.290 and 0.897 . (In other words, replace whenever two bad products are produced in sequence.)

