Chapter 13
 Advanced Queues

13.1. (a) $x_{6}=2 \times 29+12=70$
(b) $x_{10}=\frac{\sqrt{2}}{4}(1+\sqrt{2})^{10}-\frac{\sqrt{2}}{4}(1-\sqrt{2})^{10}=2378$
13.3. The parameters are $\lambda=1 / \mathrm{hr}$ and $\mu=0.8284 / \mathrm{hr}$. (There will be some roundoff error for this problem. The mean rate should actually be $2(\sqrt{2}-1)$.
(a) The generator is

$$
\mathbf{Q}=\left[\begin{array}{cccccc}
-\lambda & \lambda & 0 & 0 & 0 & \cdots \\
0 & -\lambda & \lambda & 0 & 0 & \cdots \\
\mu & 0 & -(\lambda+\mu) & \lambda & 0 & \cdots \\
0 & \mu & 0 & -(\lambda+\mu) & \lambda & \cdots \\
0 & 0 & \mu & 0 & -(\lambda+\mu) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

The characteristic equation is

$$
\mu z^{3}-(\lambda+\mu) z+\lambda=0
$$

(b) The equation factors into $(z-1)\left(\mu z^{2}+\mu z-\lambda\right)$, and the quadratic part has roots given by

$$
\begin{aligned}
z & =\frac{-\mu \pm \sqrt{\mu^{2}+4 \mu \lambda}}{2 \mu} \\
& =\frac{-0.8284 \pm \sqrt{0.8284^{2}+4(0.8284)}}{2(0.8284)} \\
& =\frac{-0.8284 \pm 2}{1.6568}
\end{aligned}
$$

Thus, $z_{1}=0.707$ and $z_{2}=-1.707$. Since the absolute value of z_{2} is greater than 1 , the value of c_{2} must be zero or the norming equation would not converge.

Also note that the limits on the general equation is for $n \geq 2$, so the lowest indexed p included in the general equation is p_{1}; therefore, $p_{n}=c_{1} z_{1}^{n}$ for $n \geq 1$. Redefining the constant yields $p_{n}=p_{1}(0.707)^{n-1}$.
(c) To find the values for p_{0} and p_{1}, we first use the first equation from part (a):

$$
\begin{aligned}
-\lambda p_{0}+\mu p_{2} & =0 \\
-p_{0}+(0.8284) \cdot(0.707) p_{1} & =0 \\
p_{0} & =0.5857 p_{1}
\end{aligned}
$$

Now using the norming equation:

$$
\begin{aligned}
1 & =\sum_{n=0}^{\infty} p_{n}=p_{0}+\sum_{n=1}^{\infty} p_{n} \\
& =0.5857 p_{1}+p_{1} \sum_{n=1}^{\infty} 0.707^{n-1} \\
& =p_{1}\left(0.5857+\frac{1}{1-0.707}\right)=4.0
\end{aligned}
$$

Thus, $p_{0}=0.146$ and

$$
p_{n}=\frac{0.707^{n-1}}{4} \text { for } n=1,2, \cdots
$$

Finally,

$$
\begin{aligned}
P\{N>3\} & =1-P\{N \leq 3\} \\
& =1-p_{0}-p_{1}-p_{2}-p_{3} \\
& =1-0.146-0.25-0.178-0.125=0.301
\end{aligned}
$$

(d) $E[N]=2.91$
13.5. The generator matrix is
$\mathbf{Q}=\left[\begin{array}{c|cc|cc|cc|c}-\lambda & \lambda_{1} & \lambda_{2} & 0 & 0 & 0 & 0 & \cdots \\ \hline \mu & -(\lambda+\mu) & \lambda_{1} & \lambda_{2} & 0 & 0 & 0 & \cdots \\ 0 & 2 \mu & -(\lambda+2 \mu) & \lambda_{1} & \lambda_{2} & 0 & 0 & \cdots \\ \hline 0 & 0 & 2 \mu & -(\lambda+2 \mu) & \lambda_{1} & \lambda_{2} & 0 & \cdots \\ 0 & 0 & 0 & 2 \mu & -(\lambda+2 \mu) & \lambda_{1} & \lambda_{2} & \cdots \\ \hline 0 & 0 & 0 & 2 \mu & -(\lambda+2 \mu) & \lambda_{1} & \cdots & \\ 0 & 0 & 0 & 0 & 0 & 2 \mu-(\lambda+2 \mu) & \cdots \\ \hline \vdots & \ddots\end{array}\right]$.

The system of equations that must be solved to obtain the steady-state probabilities is

$$
\begin{aligned}
p_{0}\left(\lambda_{1}, \lambda_{2}\right)+\mathbf{p}_{1}\left[\begin{array}{cc}
-(\lambda+\mu) & \lambda_{1} \\
2 \mu & -(\lambda+2 \mu)
\end{array}\right]+\mathbf{p}_{2} \mathbf{M} & =\mathbf{0} \\
\mathbf{p}_{n-1} \boldsymbol{\Lambda}+\mathbf{p}_{n} \mathbf{A}+\mathbf{p}_{n+1} \mathbf{M} & =\mathbf{0} \text { for } n=2,3, \cdots \\
p_{0}+\sum_{n=1}^{\infty} \mathbf{p}_{n} & =0
\end{aligned}
$$

where

$$
\boldsymbol{\Lambda}=\left[\begin{array}{cc}
\lambda_{2} & 0 \\
\lambda_{1} & \lambda_{2}
\end{array}\right] \quad \mathbf{A}=\left[\begin{array}{cc}
-(\lambda+2 \mu) & \lambda_{1} \\
2 \mu & -(\lambda+2 \mu)
\end{array}\right] \quad \mathbf{M}=\left[\begin{array}{cc}
0 & 2 \mu \\
0 & 0
\end{array}\right]
$$

Thus the matrix characteristic equation is

$$
\mathbf{R}^{2} \mathbf{M}+\mathbf{R} \mathbf{A}+\boldsymbol{\Lambda}=\mathbf{0}
$$

with the boundary conditions given by

$$
\begin{aligned}
p_{0}\left(\lambda_{1}, \lambda_{2}\right)+\mathbf{p}_{1}\left[\begin{array}{cc}
-(\lambda+\mu) & \lambda_{1} \\
2 \mu & -(\lambda+2 \mu)
\end{array}\right]+\mathbf{p}_{1} \mathbf{R} \mathbf{M} & =\mathbf{0} \\
p_{0}+p_{1}(\mathbf{I}-\mathbf{R})^{-1} \mathbf{1} & =0
\end{aligned}
$$

13.7. A state of the system will be defined by (n, v), where n is the total number of calls in the system and v is the number of voice calls is service. Note that since voice calls cannot wait, all jobs waiting are data calls.
(a) The matrix \mathbf{Q} is defined (with $\lambda=\lambda_{d}+\lambda_{v}$ and \times representing the negative of the row sum) by

Thus the matrix characteristic equation is

$$
\mathbf{R}^{2} \mathbf{M}+\mathbf{R} \mathbf{A}+\boldsymbol{\Lambda}=\mathbf{0}
$$

where

$$
\begin{gathered}
\Lambda=\left[\begin{array}{ccc}
\lambda_{d} & 0 & 0 \\
0 & \lambda_{d} & 0 \\
0 & 0 & \lambda_{d}
\end{array}\right] \quad \mathbf{M}=\left[\begin{array}{ccc}
2 \mu_{d} & 0 & 0 \\
\mu_{v} & \mu_{d} & 0 \\
0 & 2 \mu_{v} & 0
\end{array}\right] \\
\mathbf{A}=\left[\begin{array}{ccc}
-\left(\lambda_{d}+2 \mu_{d}\right) & 0 & 0 \\
0 & -\left(\lambda_{d}+\mu_{d}+\mu_{v}\right) & 0 \\
0 & 0 & -\left(\lambda_{d}+2 \mu_{v}\right)
\end{array}\right] .
\end{gathered}
$$

For the boundary conditions, partition the steady-state probability vector such that $\mathbf{p}_{1}=\left(p_{00}, p_{10}, p_{11}\right)$ and $\mathbf{p}_{n}=\left(p_{n 0}, p_{n 1}, p_{n 2}\right)$ for $n \geq 2$. Then the boundary conditions are

$$
\begin{array}{r}
\mathbf{p}_{1}\left[\begin{array}{ccc}
-\lambda & \lambda_{d} & \lambda_{v} \\
\mu_{d}-\left(\lambda+\mu_{d}\right) & 0 \\
\mu_{v} & 0 & -\left(\lambda+\mu_{v}\right)
\end{array}\right]+\mathbf{p}_{2}\left[\begin{array}{ccc}
0 & 2 \mu_{d} & 0 \\
0 & \mu_{v} & \mu_{d} \\
0 & 0 & 2 \mu_{v}
\end{array}\right]
\end{array}=\mathbf{0} .
$$

(b) The matrix equation to be solved is

$$
\mathbf{R}^{2}\left[\begin{array}{ccc}
120 & 0 & 0 \\
5 & 60 & 0 \\
0 & 10 & 0
\end{array}\right]+\mathbf{R}\left[\begin{array}{ccc}
-180 & 0 & 0 \\
0 & -125 & 0 \\
0 & 0 & -70
\end{array}\right]+\left[\begin{array}{ccc}
60 & 0 & 0 \\
0 & 60 & 0 \\
0 & 0 & 60
\end{array}\right]=\mathbf{0}
$$

where

$$
\mathbf{R}=\left[\begin{array}{ccc}
r_{11} & 0 & 0 \\
r_{21} & r_{22} & 0 \\
r_{31} & r_{32} & r_{33}
\end{array}\right] \text { and } \mathbf{R}^{2}=\left[\begin{array}{ccc}
r_{11}^{2} & 0 & 0 \\
r_{21}^{(2)} & r_{22}^{2} & 0 \\
r_{31}^{(2)} & r_{32}^{(2)} & r_{33}^{2}
\end{array}\right]
$$

We begin by looking at the three diagonal elements which yield the following system of equations

$$
\begin{aligned}
120 r_{11}^{2}-180 r_{11}+60 & =0 \\
60 r_{22}^{2}-125 r_{22}+60 & =0 \\
-70 r_{33}+60 & =0
\end{aligned}
$$

which implies $r_{11}=0.5, r_{22}=0.75$, and $r_{33}=6 / 7$. (Notice that for the quadratic equaitons, we always took the root less than one.) The two equations that result from looking at the first subdiagonal yield

$$
\begin{aligned}
& 120 r_{21}^{(2)}+5 r_{22}^{2}-180 r_{21}=0 \\
& 60 r_{32}^{(2)}+10 r_{33}^{2}-125 r_{32}=0
\end{aligned}
$$

Because $r_{21}^{(2)}=r_{21} r_{11}+r_{22} r_{21}$ and $r_{32}^{(2)}=r_{32} r_{22}+r_{33} r_{32}$, it follows that the above is equivalent to

$$
\begin{aligned}
& 120\left(r_{21} r_{11}+r_{22} r_{21}\right)+5 r_{22}^{2}-180 r_{21}=0 \\
& 60\left(r_{32} r_{22}+r_{33} r_{32}\right)+10 r_{33}^{2}-125 r_{32}=0 .
\end{aligned}
$$

Thus, $r_{21}=0.0938$ and $r_{32}=0.2571$. The final equation is obtained by looking at the bottom left element in the above matrix equation; namely,

$$
120 r_{31}^{(2)}+5 r_{32}^{(2)}-180 r_{31}=0
$$

which is rewritten as

$$
120\left(r_{31} r_{11}+r_{32} r_{21}+r_{33} r_{31}\right)+5\left(r_{32} r_{22}+r_{33} r_{32}\right)-180 r_{31}=0
$$

Thus, $r_{31}=0.2251$. In other words,

$$
\mathbf{R}=\left[\begin{array}{ccc}
0.5000 & 0 & 0 \\
0.0938 & 0.7500 & 0 \\
0.2892 & 0.2571 & 0.8571
\end{array}\right]
$$

(c) First

$$
\begin{aligned}
& \mathbf{p}_{1}=(0.191,0.198,0.061) \\
& \mathbf{p}_{2}=(0.107,0.056,0.003)
\end{aligned}
$$

$L_{d a t a}=2.7$.
(d) The probability that two voice calls are in the system is given by

$$
\sum_{n=2}^{\infty} \mathbf{p}_{n}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=0.024
$$

(e) The conditional expected number of data calls in the system given that voice calls occupy both channels is

$$
L_{d \mid V=2}=6.06
$$

13.9. Current System: The $M / M / 1$ system.

Since $\rho=5 / 6$, we have $p_{0}=1 / 6$ and $L=5$; thus

$$
E[C]=100\left(1-p_{0}\right)+50 L=333.33
$$

Alternative System: The $\mathrm{M} / E_{4} / 1$ system.

$$
E[C]=100\left(1-p_{0}\right)+50 L=289.33
$$

thus, there is the potential to save $\$ 44$ per hour.
13.11. A state of the system will be defined by (k, n), where k indicates the phase that the arriving customer is in and n is the total number of customers in the system. (The "arriving customer" is not yet in the system.)
(a) To find \mathbf{R} analytically, first show that the matrix quadratic equation defining \mathbf{R} can be written as

$$
\left[\begin{array}{cc}
0 & 0 \\
r_{21} r_{22} & r_{22}^{2}
\end{array}\right]\left[\begin{array}{cc}
\mu & 0 \\
0 & \mu
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
r_{21} & r_{22}
\end{array}\right]\left[\begin{array}{cc}
-(2 \lambda+\mu) & 0 \\
0 & -(2 \lambda+\mu)
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
2 \lambda & 0
\end{array}\right]=\mathbf{0}
$$

which leads to the following system (after dividing both equations by μ and letting $\rho=\lambda / \mu)$.

$$
\begin{aligned}
& r_{21} r_{22}-(2 \rho+1) r_{21}+2 \rho=0 \\
& r_{22}^{2}+2 \rho r_{21}-(2 \rho+1) r_{22}=0
\end{aligned}
$$

After a substitution, a cubic equation in r_{22} is obtained. Noting that $r_{22}=1$ is a solution to the cubic equation, we can factor the cubic equation and obtain the following quadratic equation:

$$
r_{22}^{2}-(4 \rho+1) r_{22}+4 \rho^{2}=0
$$

which yields

$$
\begin{aligned}
& r_{22}=2 \rho+0.5-\sqrt{2 \rho+0.25} \\
& r_{21}=\left((2 \rho+1) r_{22}-r_{22}^{2}\right) /(2 \rho)
\end{aligned}
$$

Using the fact that for this problem, $\rho=10 / 12$, the \mathbf{R} matrix is

$$
\mathbf{R}=\left[\begin{array}{cc}
0 & 0 \\
0.8844 & 0.7822
\end{array}\right]
$$

(b) The probability that a queue is present

$$
1-0.058-0.109-0.8844 \times 0.109-0.7822 \times 0.109=0.651
$$

(c) For the expected number in the system, we have

$$
\begin{aligned}
L & =\mathbf{p}_{0} \mathbf{R}(\mathbf{I}-\mathbf{R})^{-2} \mathbf{1} \\
& =\left(0.8844 p_{20}, 0.7822 p_{20}\right)(1,43.795)^{T}=3.83
\end{aligned}
$$

13.13. Let the arrival process have parameters $\mathbf{G}_{*}, \mathbf{G}_{\Delta}$, and α_{*}. The mean service rate is given by μ. The generator is thus given by

$$
\mathbf{Q}=\left[\begin{array}{ccccc}
\mathbf{G}_{*} & \mathbf{G}_{\Delta} \alpha & & & \cdots \\
\mu \mathbf{I} & \mathbf{G}_{*}-\mu \mathbf{I} & \mathbf{G}_{\Delta} \alpha & & \cdots \\
& 2 \mu \mathbf{I} & \mathbf{G}_{*}-2 \mu \mathbf{I} & \mathbf{G}_{\Delta} \alpha & \cdots \\
& & 2 \mu \mathbf{I} & \mathbf{G}_{*}-2 \mu \mathbf{I} & \mathbf{G}_{\Delta} \alpha \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline
\end{array}\right.
$$

The matrix characteristic equation is

$$
2 \mu \mathbf{R}^{2}+\mathbf{R}\left(\mathbf{G}_{*}-2 \mu \mathbf{I}\right)+\mathbf{G}_{\Delta} \alpha=\mathbf{0}
$$

which implies that $\mathbf{p}_{n}=p_{1} \mathbf{R}^{n-1}$ for $n=1,2, \cdots$. The boundary equations are

$$
\begin{aligned}
\mathbf{p}_{0} \mathbf{G}_{*}+\mu \mathbf{p}_{1} & =\mathbf{0} \\
\mathbf{p}_{0} \mathbf{G}_{\Delta} \alpha+\mathbf{p}_{1}\left(\mathbf{G}_{*}-\mu \mathbf{I}+2 \mu \mathbf{R}\right) & =\mathbf{0} \\
\mathbf{p}_{0} \mathbf{1}+\mathbf{p}_{1}(\mathbf{I}-\mathbf{R})^{-1} \mathbf{1} & =1 .
\end{aligned}
$$

It should also be noted that the vector multiplication $\mathbf{G}_{\Delta} \alpha$ results in a matrix, since the first vector is a column vector and the second one is a row vector.

