Chapter 13 Advanced Queues

13.1. (a)
$$x_6 = 2 \times 29 + 12 = 70$$

(b) $x_{10} = \frac{\sqrt{2}}{4} \left(1 + \sqrt{2}\right)^{10} - \frac{\sqrt{2}}{4} \left(1 - \sqrt{2}\right)^{10} = 2378$

13.3. The parameters are $\lambda = 1/hr$ and $\mu = 0.8284/hr$. (There will be some round-off error for this problem. The mean rate should actually be $2(\sqrt{2}-1)$.

(a) The generator is

$$\mathbf{Q} = \begin{bmatrix} -\lambda & \lambda & 0 & 0 & 0 & \cdots \\ 0 & -\lambda & \lambda & 0 & 0 & \cdots \\ \mu & 0 & -(\lambda + \mu) & \lambda & 0 & \cdots \\ 0 & \mu & 0 & -(\lambda + \mu) & \lambda & \cdots \\ 0 & 0 & \mu & 0 & -(\lambda + \mu) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

The characteristic equation is

$$\mu z^3 - (\lambda + \mu)z + \lambda = 0.$$

(b) The equation factors into $(z-1)(\mu z^2 + \mu z - \lambda)$, and the quadratic part has roots given by

$$z = \frac{-\mu \pm \sqrt{\mu^2 + 4\mu\lambda}}{2\mu}$$
$$= \frac{-0.8284 \pm \sqrt{0.8284^2 + 4(0.8284)}}{2(0.8284)}$$
$$= \frac{-0.8284 \pm 2}{1.6568}$$

Thus, $z_1 = 0.707$ and $z_2 = -1.707$. Since the absolute value of z_2 is greater than 1, the value of c_2 must be zero or the norming equation would not converge.

Also note that the limits on the general equation is for $n \ge 2$, so the lowest indexed *p* included in the general equation is p_1 ; therefore, $p_n = c_1 z_1^n$ for $n \ge 1$. Redefining the constant yields $p_n = p_1(0.707)^{n-1}$.

(c) To find the values for p_0 and p_1 , we first use the first equation from part (a):

$$-\lambda p_0 + \mu p_2 = 0$$

-p_0 + (0.8284) \cdot (0.707) p_1 = 0
p_0 = 0.5857 p_1

Now using the norming equation:

$$1 = \sum_{n=0}^{\infty} p_n = p_0 + \sum_{n=1}^{\infty} p_n$$

= 0.5857 p_1 + p_1 $\sum_{n=1}^{\infty} 0.707^{n-1}$
= p_1(0.5857 + $\frac{1}{1 - 0.707}$) = 4.0

Thus, $p_0 = 0.146$ and

$$p_n = \frac{0.707^{n-1}}{4}$$
 for $n = 1, 2, \cdots$.

Finally,

$$P\{N > 3\} = 1 - P\{N \le 3\}$$

= 1 - p₀ - p₁ - p₂ - p₃
= 1 - 0.146 - 0.25 - 0.178 - 0.125 = 0.301.

(d) E[N] = 2.91

13.5. The generator matrix is

$-\lambda$	λ_1	λ_2	0	0	0	0]
μ	$-(\lambda + \mu)$	λ_1	λ_2	0	0	0	•••	
0	2μ	$-(\lambda + 2\mu)$	λ_1	λ_2	0	0		
0	0	2μ	$-(\lambda+2\mu)$	λ_1	λ_2	0		
0	0	0	2μ	$-(\lambda + 2\mu)$	λ_1	λ_2		.
0	0	0	2μ	$-(\lambda+2\mu)$	λ_1	•••		
0	0	0	0	0	2μ	$-(\lambda+2\mu)$		
	•	•	:	:	:	•	·	
	$ \begin{array}{c} -\lambda \\ \mu \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \mu & -(\lambda + \mu) & \lambda_1 \\ 0 & 2\mu & -(\lambda + 2\mu) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

The system of equations that must be solved to obtain the steady-state probabilities is

$$p_{0}(\lambda_{1},\lambda_{2}) + \mathbf{p}_{1} \begin{bmatrix} -(\lambda + \mu) & \lambda_{1} \\ 2\mu & -(\lambda + 2\mu) \end{bmatrix} + \mathbf{p}_{2}\mathbf{M} = \mathbf{0}$$
$$\mathbf{p}_{n-1}\mathbf{A} + \mathbf{p}_{n}\mathbf{A} + \mathbf{p}_{n+1}\mathbf{M} = \mathbf{0} \text{ for } n = 2, 3, \cdots$$
$$p_{0} + \sum_{n=1}^{\infty} \mathbf{p}_{n} = 0$$

where

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_2 & 0\\ \lambda_1 & \lambda_2 \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} -(\lambda + 2\mu) & \lambda_1\\ 2\mu & -(\lambda + 2\mu) \end{bmatrix} \quad \mathbf{M} = \begin{bmatrix} 0 & 2\mu\\ 0 & 0 \end{bmatrix}$$

Thus the matrix characteristic equation is

$$\mathbf{R}^2\mathbf{M} + \mathbf{R}\mathbf{A} + \mathbf{\Lambda} = \mathbf{0}$$

with the boundary conditions given by

$$p_0(\lambda_1, \lambda_2) + \mathbf{p}_1 \begin{bmatrix} -(\lambda + \mu) & \lambda_1 \\ 2\mu & -(\lambda + 2\mu) \end{bmatrix} + \mathbf{p}_1 \mathbf{R} \mathbf{M} = \mathbf{0}$$
$$p_0 + p_1 (\mathbf{I} - \mathbf{R})^{-1} \mathbf{1} = 0$$

13.7. A state of the system will be defined by (n, v), where *n* is the total number of calls in the system and *v* is the number of voice calls is service. Note that since voice calls cannot wait, all jobs waiting are data calls.

(a) The matrix **Q** is defined (with $\lambda = \lambda_d + \lambda_v$ and \times representing the negative of the row sum) by

(0, 0)	$\lceil -\lambda angle$	λ_d	λ_{v}]
(1, 0)	μ_d	\times		λ_d	λ_v					
(1, 1)	μ_v		\times		λ_d	λ_v				
(2,0)		$2\mu_d$		\times			λ_d			
(2,1)		μ_v	μ_d		\times			λ_d		· · ·
(2,2)			$2\mu_v$			\times			λ_d	
(3,0)				$2\mu_d$			×			••••
(3,1)				μ_v	μ_d			\times		
(3,2)					$2\mu_v$				\times	
:	:	:	:	:	:	:	:	:	:	· .
·	Ŀ·	•	·	·	•	•	·	·	·	•]

Thus the matrix characteristic equation is

$$\mathbf{R}^2\mathbf{M} + \mathbf{R}\mathbf{A} + \boldsymbol{\Lambda} = \mathbf{0}$$

2

where

•

$$\mathbf{A} = \begin{bmatrix} \lambda_d & 0 & 0 \\ 0 & \lambda_d & 0 \\ 0 & 0 & \lambda_d \end{bmatrix} \mathbf{M} = \begin{bmatrix} 2\mu_d & 0 & 0 \\ \mu_v & \mu_d & 0 \\ 0 & 2\mu_v & 0 \end{bmatrix}$$
$$\mathbf{A} = \begin{bmatrix} -(\lambda_d + 2\mu_d) & 0 & 0 \\ 0 & -(\lambda_d + \mu_d + \mu_v) & 0 \\ 0 & 0 & -(\lambda_d + 2\mu_v) \end{bmatrix}$$

For the boundary conditions, partition the steady-state probability vector such that $\mathbf{p}_1 = (p_{00}, p_{10}, p_{11})$ and $\mathbf{p}_n = (p_{n0}, p_{n1}, p_{n2})$ for $n \ge 2$. Then the boundary conditions are

$$\mathbf{p}_{1} \begin{bmatrix} -\lambda & \lambda_{d} & \lambda_{v} \\ \mu_{d} & -(\lambda + \mu_{d}) & 0 \\ \mu_{v} & 0 & -(\lambda + \mu_{v}) \end{bmatrix} + \mathbf{p}_{2} \begin{bmatrix} 0 & 2\mu_{d} & 0 \\ 0 & \mu_{v} & \mu_{d} \\ 0 & 0 & 2\mu_{v} \end{bmatrix} = \mathbf{0}$$
$$\mathbf{p}_{1} \begin{bmatrix} 0 & 0 & 0 \\ \lambda_{d} & \lambda_{v} & 0 \\ 0 & \lambda_{d} & \lambda_{v} \end{bmatrix} + \mathbf{p}_{2}\mathbf{A} + \mathbf{p}_{2}\mathbf{R}\mathbf{M} = \mathbf{0}$$
$$\mathbf{p}_{1}\mathbf{1} + \mathbf{p}_{2}\left(\mathbf{I} - \mathbf{R}\right)^{-1}\mathbf{1} = 1$$

(b) The matrix equation to be solved is

$$\mathbf{R}^{2} \begin{bmatrix} 120 & 0 & 0 \\ 5 & 60 & 0 \\ 0 & 10 & 0 \end{bmatrix} + \mathbf{R} \begin{bmatrix} -180 & 0 & 0 \\ 0 & -125 & 0 \\ 0 & 0 & -70 \end{bmatrix} + \begin{bmatrix} 60 & 0 & 0 \\ 0 & 60 & 0 \\ 0 & 0 & 60 \end{bmatrix} = \mathbf{0}$$

where

$$\mathbf{R} = \begin{bmatrix} r_{11} & 0 & 0 \\ r_{21} & r_{22} & 0 \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \text{ and } \mathbf{R}^2 = \begin{bmatrix} r_{11}^2 & 0 & 0 \\ r_{21}^{(2)} & r_{22}^2 & 0 \\ r_{31}^{(2)} & r_{32}^2 & r_{33}^2 \end{bmatrix}.$$

We begin by looking at the three diagonal elements which yield the following system of equations

$$120r_{11}^2 - 180r_{11} + 60 = 0$$

$$60r_{22}^2 - 125r_{22} + 60 = 0$$

$$-70r_{33} + 60 = 0$$

which implies $r_{11} = 0.5$, $r_{22} = 0.75$, and $r_{33} = 6/7$. (Notice that for the quadratic equaitons, we always took the root less than one.) The two equations that result from looking at the first subdiagonal yield

$$120r_{21}^{(2)} + 5r_{22}^2 - 180r_{21} = 0$$

$$60r_{32}^{(2)} + 10r_{33}^2 - 125r_{32} = 0.$$

Because $r_{21}^{(2)} = r_{21}r_{11} + r_{22}r_{21}$ and $r_{32}^{(2)} = r_{32}r_{22} + r_{33}r_{32}$, it follows that the above is equivalent to

$$120(r_{21}r_{11} + r_{22}r_{21}) + 5r_{22}^2 - 180r_{21} = 0$$

$$60(r_{32}r_{22} + r_{33}r_{32}) + 10r_{33}^2 - 125r_{32} = 0.$$

Thus, $r_{21} = 0.0938$ and $r_{32} = 0.2571$. The final equation is obtained by looking at the bottom left element in the above matrix equation; namely,

$$120r_{31}^{(2)} + 5r_{32}^{(2)} - 180r_{31} = 0$$

which is rewritten as

$$120(r_{31}r_{11} + r_{32}r_{21} + r_{33}r_{31}) + 5(r_{32}r_{22} + r_{33}r_{32}) - 180r_{31} = 0$$

Thus, $r_{31} = 0.2251$. In other words,

$$\mathbf{R} = \begin{bmatrix} 0.5000 & 0 & 0\\ 0.0938 & 0.7500 & 0\\ 0.2892 & 0.2571 & 0.8571 \end{bmatrix}$$

(c) First

$$\mathbf{p}_1 = (0.191, 0.198, 0.061)$$

$$\mathbf{p}_2 = (0.107, 0.056, 0.003).$$

 $L_{data} = 2.7.$

(d) The probability that two voice calls are in the system is given by

$$\sum_{n=2}^{\infty} \mathbf{p}_n \begin{pmatrix} 0\\0\\1 \end{pmatrix} = 0.024 \, .$$

(e) The conditional expected number of data calls in the system given that voice calls occupy both channels is

$$L_{d|V=2} = 6.06$$

13.9. Current System: The M/M/1 system. Since $\rho = 5/6$, we have $p_0 = 1/6$ and L = 5; thus

$$E[C] = 100(1 - p_0) + 50L = 333.33$$
.

Alternative System: The $M/E_4/1$ system.

$$E[C] = 100(1 - p_0) + 50L = 289.33$$

thus, there is the potential to save \$44 per hour.

13.11. A state of the system will be defined by (k, n), where k indicates the phase that the arriving customer is in and n is the total number of customers in the system. (The "arriving customer" is not yet in the system.)

(a) To find **R** analytically, first show that the matrix quadratic equation defining **R** can be written as

$$\begin{bmatrix} 0 & 0 \\ r_{21}r_{22} & r_{22}^2 \end{bmatrix} \begin{bmatrix} \mu & 0 \\ 0 & \mu \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ r_{21} & r_{22} \end{bmatrix} \begin{bmatrix} -(2\lambda + \mu) & 0 \\ 0 & -(2\lambda + \mu) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 2\lambda & 0 \end{bmatrix} = \mathbf{0}$$

which leads to the following system (after dividing both equations by μ and letting $\rho = \lambda/\mu$).

$$r_{21}r_{22} - (2\rho + 1)r_{21} + 2\rho = 0$$

$$r_{22}^2 + 2\rho r_{21} - (2\rho + 1)r_{22} = 0.$$

After a substitution, a cubic equation in r_{22} is obtained. Noting that $r_{22} = 1$ is a solution to the cubic equation, we can factor the cubic equation and obtain the following quadratic equation:

$$r_{22}^2 - (4\rho + 1)r_{22} + 4\rho^2 = 0$$

which yields

$$r_{22} = 2\rho + 0.5 - \sqrt{2\rho} + 0.25$$

$$r_{21} = \left((2\rho + 1)r_{22} - r_{22}^2 \right) / (2\rho) .$$

Using the fact that for this problem, $\rho = 10/12$, the **R** matrix is

$$\mathbf{R} = \left[\begin{array}{cc} 0 & 0 \\ 0.8844 & 0.7822 \end{array} \right] \,.$$

(b) The probability that a queue is present

$$1 - 0.058 - 0.109 - 0.8844 \times 0.109 - 0.7822 \times 0.109 = 0.651$$
.

(c) For the expected number in the system, we have

$$L = \mathbf{p}_0 \mathbf{R} (\mathbf{I} - \mathbf{R})^{-2} \mathbf{1}$$

= (0.8844 p_{20}, 0.7822 p_{20}) (1, 43.795)^T = 3.83

13.13. Let the arrival process have parameters G_* , G_{Δ} , and α_* . The mean service rate is given by μ . The generator is thus given by

$$\mathbf{Q} = \begin{bmatrix} \mathbf{G}_* & \mathbf{G}_\Delta \alpha & \cdots \\ \mu \mathbf{I} & \mathbf{G}_* - \mu \mathbf{I} & \mathbf{G}_\Delta \alpha & \cdots \\ 2\mu \mathbf{I} & \mathbf{G}_* - 2\mu \mathbf{I} & \mathbf{G}_\Delta \alpha & \cdots \\ 2\mu \mathbf{I} & \mathbf{G}_* - 2\mu \mathbf{I} & \mathbf{G}_\Delta \alpha & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

The matrix characteristic equation is

$$2\mu \mathbf{R}^2 + \mathbf{R}(\mathbf{G}_* - 2\mu \mathbf{I}) + \mathbf{G}_\Delta \alpha = \mathbf{0}$$

which implies that $\mathbf{p}_n = p_1 \mathbf{R}^{n-1}$ for $n = 1, 2, \cdots$. The boundary equations are

$$\mathbf{p}_0 \mathbf{G}_* + \mu \mathbf{p}_1 = \mathbf{0}$$
$$\mathbf{p}_0 \mathbf{G}_\Delta \alpha + \mathbf{p}_1 (\mathbf{G}_* - \mu \mathbf{I} + 2\mu \mathbf{R}) = \mathbf{0}$$
$$\mathbf{p}_0 \mathbf{1} + \mathbf{p}_1 (\mathbf{I} - \mathbf{R})^{-1} \mathbf{1} = 1 .$$

It should also be noted that the vector multiplication $G_{\Delta}\alpha$ results in a matrix, since the first vector is a column vector and the second one is a row vector.

.