Chapter 7

Queueing Processes

7.1. (a) $15 \times 0.5=7.5$
(b) $\frac{1}{15} \mathrm{hr}$, or 4 min
(c) $\frac{18}{60} \times 15=\frac{9}{2}$
(d) 0.1125
(e) 0.0111
(f) 11 min
7.3. (a) $\frac{3}{4}$
(b) $\frac{9}{4}$
(c) $\frac{9}{16}$
(d) $\frac{1}{5}$
(e) Cost $/ \mathrm{hr}=14.4 / \mathrm{hr}$

Cost' $/ \mathrm{hr}=14.8 / \mathrm{hr}$
Therefore, do not use the additional expenditure.
7.5. (This problem uses the closed form of the geometric progression as shown in the footnote by Eqs. (5.5) and (5.7).)
(a) For birth-death equations, let $\lambda_{n}=\lambda$ for all n, and let $\mu_{1}=\mu, \mu_{2}=2 \mu, \mu_{n}=$ 3μ for $n \geq 3$. Thus,

$$
\begin{aligned}
p_{1} & =p_{0} \frac{\lambda}{\mu} \\
p_{2} & =p_{0} \frac{\lambda \cdot \lambda}{\mu \cdot 2 \mu} \\
p_{3} & =p_{0} \frac{\lambda \cdot \lambda \cdot \lambda}{\mu \cdot 2 \mu \cdot 3 \mu} \\
p_{4} & =p_{0} \frac{\lambda \cdot \lambda \cdot \lambda \cdot \lambda}{\mu \cdot 2 \mu \cdot 3 \mu \cdot 3 \mu}
\end{aligned}
$$

$$
\vdots \quad \vdots
$$

We can show by induction that $p_{n}=p_{0} \times \lambda^{n} /\left(2 \mu^{n} \cdot 3^{n-2}\right)$ for $n \geq 2$, and the equations $p_{1}=3 \rho p_{0}$ and $p_{n}=4.5 \rho^{n} p_{0}$ for $n \geq 2$. Then the norming equation is used for p_{0} :

$$
\begin{aligned}
1 & =\sum_{n=0}^{\infty} p_{n} \\
& =p_{0}+3 \rho p_{0}+\sum_{n=2}^{\infty} 4.5 \rho^{n} p_{0} \\
& =p_{0}+3 \rho p_{0}+4.5 \rho^{2} p_{0} \sum_{n=0}^{\infty} \rho^{n-2} \\
& =p_{0}\left(1+3 \rho+4.5 \rho^{2} \times \frac{1}{1-\rho}\right) \\
& =p_{0} \frac{1+2 \rho+1.5 \rho^{2}}{1-\rho}
\end{aligned}
$$

The result follows after solving for p_{0}.
(b)

$$
\begin{aligned}
L_{q} & =\sum_{n=1}^{\infty} n p_{n+3} \\
& =4.5 p_{0} \sum_{n=1}^{\infty} n \rho^{n+3} \\
& =4.5 p_{0} \sum_{n=1}^{\infty} n \rho^{n+3} \\
& =4.5 p_{0} \rho^{4} \sum_{n=1}^{\infty} n \rho^{n-1} \\
& =4.5 p_{0} \rho^{4} \frac{1}{(1-\rho)^{2}}
\end{aligned}
$$

The result follows after substituting for p_{0} and simplifying.
7.7. (a) $\lambda=6 /$ day $\mu=4.8 /$ day and $\rho=1.25$

For M/M/1/3 system,

$$
\begin{aligned}
& p_{3}=\left(\frac{5}{4}\right)^{3} \frac{1-\frac{5}{4}}{1-\left(\frac{5}{4}\right)^{4}}=0.339 \\
& L_{k=3}=\frac{5}{4} \times \frac{1+3\left(\frac{5}{4}\right)^{4}-4 \times\left(\frac{5}{4}\right)^{3}}{\left(1-\frac{5}{4}\right)\left(1-\left(\frac{5}{4}\right)^{4}\right)} \\
& \quad=1.775
\end{aligned}
$$

$\operatorname{Cost}_{k=3} /$ day $=30 \times 1.775+105 \times 6 \times 0.339=266.82 /$ day
For M/M/1/4 system,

$$
\begin{aligned}
& p_{4}=\left(\frac{5}{4}\right)^{4} \frac{1-\frac{5}{4}}{1-\left(\frac{5}{4}\right)^{5}}=0.297 \\
& L_{k=4}=\frac{5}{4} \times \frac{1+4\left(\frac{5}{4}\right)^{5}-5 \times\left(\frac{5}{4}\right)^{4}}{\left(1-\frac{5}{4}\right)\left(1-\left(\frac{5}{4}\right)^{5}\right)} \\
& \quad=2.437
\end{aligned}
$$

$\operatorname{Cost}_{k=4} /$ day $=30 \times 2.437+105 \times 6 \times 0.297=260.22 /$ day
Therefore, the proposed policy change is better.
(b) For M/M/1/5 system,

$$
\begin{aligned}
p_{5}= & \left(\frac{5}{4}\right)^{5} \frac{1-\frac{5}{4}}{1-\left(\frac{5}{4}\right)^{6}}=0.271 \\
L_{k=5} & =\frac{5}{4} \times \frac{1+5\left(\frac{5}{4}\right)^{6}-6 \times\left(\frac{5}{4}\right)^{5}}{\left(1-\frac{5}{4}\right)\left(1-\left(\frac{5}{4}\right)^{6}\right)} \\
& =3.132
\end{aligned}
$$

$\operatorname{Cost}_{k=5} /$ day $=30 \times 3.132+105 \times 6 \times 0.271=264.69 /$ day
The optimum cut-off policy is to allow 4 jobs in center.
(c) $6 \times 105=630 /$ day
$400+260.22=660.22 /$ day $(>630 /$ day $)$
\therefore Use only the outside contractor.
(d)
7.9. (a) For the $M / M / 1$ system, $\lambda=100 /$ day $\mu=144 /$ day \quad and $\rho=\frac{25}{36}$ $L_{c=1}=2.273$
For the M/M/3 system, $\lambda^{\prime}=100 /$ day $\mu^{\prime}=\frac{60 \times 24}{27} /$ day \quad and $r=\frac{15}{8}$
$p_{0}=0.1322$
$L_{q}=0.1322 \times \frac{3 \times\left(\frac{15}{8}\right)^{4}}{6 \times\left(3-\frac{15}{8}\right)^{2}}=0.6455 ; \quad L_{c=3}=L_{q}+r=2.5205$
\therefore The robot reduces the inventory most.
(b) $0.5 \times 24=12$ /day

For the M/M/2 system, $\lambda^{\prime \prime}=100 /$ day $\mu^{\prime \prime}=\frac{160}{3} /$ day and $\rho^{\prime \prime}=\frac{15}{16}$
$L_{c=2}=\frac{2 \rho^{\prime \prime}}{1-\rho^{\prime \prime 2}}=15.48$
$\operatorname{Cost}_{c=1} / \mathrm{yr} .=12 \times 2.273 \times 365+100,000=109,955.74 / \mathrm{yr}$.
$\operatorname{Cost}_{c=2} / \mathrm{yr} .=12 \times 15.48 \times 365+40,000 \times 2=147,821.45 / \mathrm{yr}$.
$\operatorname{Cost}_{c=3} / \mathrm{yr} .=12 \times 2.5205 \times 365+40,000 \times 3=131,039.79 .79 / \mathrm{yr}$.
\therefore Still use the robot.
7.11. The $M / M / \infty$ system was not discussed in the chapter, so the first step will have to be to derive the equations for this system.
(a) $\frac{\left(\frac{\lambda}{\mu}\right)^{n} \mathrm{e}^{-\frac{\lambda}{\mu}}}{n!}$.
(b) $L=\frac{\lambda}{\mu} \quad \because$ the distribution given in part (a) is Poisson
(c) $\frac{\lambda}{\mu}$ (Again this is not derived since the distribution in part (a) should be recognized as being Poisson.)
(d) $L_{q}=0$
(e) $\frac{1}{\mu}$
7.13. (a) $p_{5}=0.138$
(b) $E[\#$ working $]=1.927$
(c) $\lambda_{e}=0.48175 / \mathrm{day}$
$W=6.379$
7.15. The data of interarrival times yield: mean $=5.72 \mathrm{~min}$. and $\mathrm{st} . \mathrm{dev}=4.70 \mathrm{~min}$.
(a) $W_{q}=7.5$
$L=1.92$
(b) $W_{q \text {,wrong }}=5.52 \Longrightarrow 26 \%$ error.
$L_{\text {wrong }}=1.57 \Longrightarrow 18 \%$ error.
(c) Current cost: $=\$ 19.67 / \mathrm{hr}$

Bar reader cost: $=\$ 7.16 / \mathrm{hr}$. Assume that the cost savings occurs 86 hours per month yielding a cost reduction of approximately $\$ 1,076$ yielding a net savings of $\$ 876$ per month.
New hire cost: $=\$ 6.97 / \mathrm{hr}$. Again, assume that the cost savings occurs 86 hours per month yielding a cost reduction of approximately $\$ 1,092$ yielding a net savings of $\$ 742$ per month. Thus, the bar reader is better economically; however, hiring another individual may be better when considering other factors that were not reduced to numerical values.

