Chapter 9
 Event-Driven Simulation and Output Analyses

The hand simulations need at least two charts: the future events list and the main simulation chart. My guess is that the future events list should not prove difficult, but the main chart may be more difficult, principally due to the figuring the headings. Of course such headings are not unique, but we give below the headings and some entries for the problems that do not have tables already given by example in the text.

Problems designed for Excel are not included here.
9.1. The first problem is simply a repeat of the example, except with different random numbers. Therefore, it will not be repeated here.
9.3. Random laws \rightarrow same as in textbook except

| die toss: $1 \rightarrow 10 ; ~ 2,3 \rightarrow 11 ;$ | | | | | | | | | $4,5,6 \rightarrow 12$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clock
 time | Type
 of
 event | die
 toss | Time
 next
 arrival | Two
 coin
 toss | Good
 or bad
 item | Number
 in
 system | Three
 coin
 toss | Time
 service
 complete | Sum of
 time \times
 number |
| 0 | a | 2 | 11 | TT | bad | 0 | - | - | 0 |
| 11 | a | 4 | 23 | TH | good | 1 | THT | 27 | 0 |
| 23 | a | 2 | 33 | HH | good | 2 | - | - | 12 |
| 27 | s | - | - | - | - | 1 | HHH | 42 | 20 |
| 33 | a | 1 | 43 | HT | good | 2 | - | - | 26 |
| 42 | s | - | - | - | - | 1 | TTT | 56 | 44 |
| 43 | a | 2 | 54 | HH | good | 2 | - | - | 45 |
| \vdots | | | | | | | | | \vdots |

9.5. Random laws
coin toss:
HH $\rightarrow 345$ seconds and $\$ 10$
HT,TH $\rightarrow 350$ seconds and $\$ 10.50$
TT $\rightarrow 355$ seconds and $\$ 11$
coin toss: (interarrival times)
$\mathrm{HH} \rightarrow 150$ seconds; HT,TH $\rightarrow 180$ seconds; TT $\rightarrow 210$ seconds

9 Event-Driven Simulation and Output Analyses

Time	Type event	Coin toss	Time next arrival	Number in system	Coin toss	Service time	Time depart	Sum of profit	Time \times number	Sum of time \times number
0	a	HH	150	1	HT	350	350	10.50	-	0
150	a	TH	330	2	HH	345	495	20.50	150	150
330	a	TT	540	3	-	-	-	20.50	360	510
350	s	-	-	2	TT	355	705	31.50	60	570
495	s	-	-	1	-	-	-	31.50	290	860
540	a	TT	750	2	HH	345	885	41.50	45	905
\vdots										\vdots

9.7. Using the probabilities from Problem 2.1, we have the following random laws:

Random laws:

$$
\begin{aligned}
& R \in[0.0,0.5833) \rightarrow P=0 \\
& R \in[0.5833,0.8333) \rightarrow P=60 \\
& R \in[0.8333,1.0] \rightarrow P=100
\end{aligned}
$$

The following are the value I get using the random number generator on my calculator: $0,100,60,100,0,0,60,100,0,0,100,0,0,60,0,100,60,0,0,0,0,0,60,0$, 60 . The sum of the values and the sum of squares are

$$
\sum_{i} x_{i}=960 \quad \sum_{i} x_{i}^{2}=71,600
$$

Thus, the sample mean and standard deviation are

$$
\bar{x}=38.4 \quad s=\sqrt{1447.333}=38.0 .
$$

Therefore, the confidence interval is

$$
38.4 \pm 2.064 \frac{38.0}{5} \Rightarrow(22.71,54.09)
$$

The theoretical values are

$$
\mu=0.25 \times 60+0.167 \times 100=31.7
$$

which is within the confidence interval.
9.11. (a)

$$
\begin{aligned}
E\left[T_{0}\right] & =E\left[T_{0} \mid X_{0}=a\right] P\left\{X_{0}=a\right\}+E\left[T_{0} \mid X_{0}=b\right] P\left\{X_{0}=b\right\} \\
& =0.5 \theta_{a}+0.5 \theta_{b}
\end{aligned}
$$

(b) First define η_{i} to be second moment in each state; that is,

$$
\sigma_{i}^{2}=\eta_{i}-\theta_{i}^{2}
$$

$$
\begin{aligned}
E\left[T_{0}^{2}\right] & =E\left[T_{0}^{2} \mid X_{0}=a\right] P\left\{X_{0}=a\right\}+E\left[T_{0}^{2} \mid X_{0}=b\right] P\left\{X_{0}=b\right\} \\
& =0.5\left(\eta_{a}^{2}+\eta_{b}^{2}\right) \text { therefore } \\
\operatorname{var}\left(T_{0}\right) & =0.5\left(\sigma_{a}^{2}+\theta_{a}^{2}+\sigma_{b}^{2}+\theta_{b}^{2}\right)-E\left[T_{0}\right]^{2} \\
& =0.5\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)+0.5\left(\theta_{a}^{2}+\theta_{b}^{2}\right)-0.25\left(\theta_{a}^{2}+2 \theta_{a} \theta_{b}+\theta_{b}^{2}\right) \\
& =0.5\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)+0.25\left(\theta_{a}^{2}-2 \theta_{a} \theta_{b}+\theta_{b}^{2}\right)
\end{aligned}
$$

(c)

$$
\begin{aligned}
E\left[T_{0} T_{1}\right] & =\sum_{i, j} \theta_{i} \theta_{j} P\left\{X_{0}=i, X_{1}=j\right\} \\
& =\theta_{a} \theta_{a} \times 0.5 p+\theta_{a} \theta_{b} \times 0.5 q+\theta_{b} \theta_{a} \times 0.5 q+\theta_{b} \theta_{b} \times 0.5 p \\
& =E\left[T_{0} T_{1} \mid X_{0}=a\right] P\left\{X_{0}=a\right\}+E\left[T_{0} T_{1} \mid X_{0}=b\right] P\left\{X_{0}=b\right\} \\
E\left[T_{0} T_{1}\right]-E\left[T_{0}\right]^{2} & =0.5\left((p-0.5) \theta_{a}^{2}+2(q-0.5) \theta_{a} \theta_{b}+(p-0.5) \theta_{b}^{2}\right) \\
& =0.5(p-0.5)\left(\theta_{a}^{2}-2 \theta_{a} \theta_{b}+\theta_{b}^{2}\right) \\
& =0.25(2 p-1)\left(\theta_{a}=\theta_{b}\right)^{2}
\end{aligned}
$$

Dividing the above equation by the answer from part (b) yields the desired result.
9.13. The simulation of these correlated random variables is contained in the Excel file associated with this chapter. Note that this is also an implementation of Property 2.6.

